1. (CSDB ID: 41033) | ![]() |
{{{-b-D-Glcp-(1-3)-}}}b-D-Glcp-(1-3)-+ | b-D-Glcp-(1-3)-+ | | | b-D-Glcp-(1-6)-{{{-b-D-Glcp-(1-6)-b-D-Glcp-(1-6)-}}}b-D-Glcp | Show graphically |
Show legend Show as text |
Hericium erinaceus
(NCBI TaxID 91752,
species name lookup)
A low molecular weight polysaccharides of HEP-1, with molecular weights of 1.67 × 104 Da and composition of →6)-β-D-Glcp-(1→, →3)-β-D-Glcp-(1→, β-D-Glcp-(1→ and →3,6)-β-D-Glcp-(1→, was isolated and characterized from the fruiting body of Hericium erinaceus. The results indicated that HEP-1 showed potential effects against T2DM-induced imbalance of glucose and lipid metabolism by promoting the serum glucose uptake by hepatic glycogen synthesis via activating the IRS/PI3K/AKT signaling pathway, and inhibiting fatty acid synthesis and reducing hepatic lipid accumulation via activating the AMPK/SREBP-1c signaling pathways. Besides, HEP-1 promoted the production of beneficial bacteria in the gut, and increased the beneficial metabolites in liver through the gut-liver axis, consequently, resisting the occurrence of T2DM.
Hericium erinaceus, gut microbiota, metabonomics, T2DM
Structure type: oligomer ; 1640013C NMR data: Linkage Residue C1 C2 C3 C4 C5 C6 6,6,3 bDGlcp 6,6 bDGlcp 103.00 73.06 84.23 69.62 75.53 68.85 6,3,3 bDGlcp 6,3 bDGlcp 103.00 73.32 84.23 69.62 76.00 60.72 6 bDGlcp 103.00 73.06 84.23 69.62 75.53 68.85 6,6,6 bDGlcp 103.00 72.84 75.66 69.57 75.43 60.70 bDGlcp 103.00 73.05 75.58 69.48 74.90 68.85 1H NMR data: Linkage Residue H1 H2 H3 H4 H5 H6 6,6,3 bDGlcp 6,6 bDGlcp 4.48 3.46 3.69 3.34 3.45 4.15 6,3,3 bDGlcp 6,3 bDGlcp 4.68 3.28 3.69 3.34 3.46 3.67 6 bDGlcp 4.48 3.46 3.69 3.34 3.45 4.15 6,6,6 bDGlcp 4.48 3.47 3.68 3.34 3.44 3.84 bDGlcp 4.46 3.26 3.44 3.41 3.57 3.80 1H/13C HSQC data: Linkage Residue C1/H1 C2/H2 C3/H3 C4/H4 C5/H5 C6/H6 6,6,3 bDGlcp 6,6 bDGlcp 103.00/4.48 73.06/3.46 84.23/3.69 69.62/3.34 75.53/3.45 68.85/4.15 6,3,3 bDGlcp 6,3 bDGlcp 103.00/4.68 73.32/3.28 84.23/3.69 69.62/3.34 76.00/3.46 60.72/3.67 6 bDGlcp 103.00/4.48 73.06/3.46 84.23/3.69 69.62/3.34 75.53/3.45 68.85/4.15 6,6,6 bDGlcp 103.00/4.48 72.84/3.47 75.66/3.68 69.57/3.34 75.43/3.44 60.70/3.84 bDGlcp 103.00/4.46 73.05/3.26 75.58/3.44 69.48/3.41 74.90/3.57 68.85/3.80
1H NMR data:
|
13C NMR data:
|
2. (CSDB ID: 41074) | ![]() |
Cyclic a-D-Glcp-(1-6)-+ | a-D-Glcp-(1-6)-+ | | | a-D-Glcp-(1-6)-+ | | | | | b-D-Manp-(1-4)-+ | | | | | | | a-D-Galp-(1-4)-+ | | | | | | | | | a-D-Galp-(1-4)-+ | | | | | | | | | | | a-D-Glcp-(1-6)-+ | a-D-Glcp-(1-6)-+ | | | | | | | | | | | | | b-D-Manp-(1-4)-{{{-a-D-Glcp-(1-6)-a-D-Glcp-(1-4)-}}}/n=2/-a-D-Glcp-(1-6)-a-D-Glcp-(1-6)-a-D-Galp-(1-3)-+ | | | | | | | b-D-Manp-(1-4)-+ | | | | | | | | | a-D-Galp-(1-4)-+ | | | | | | | | | | | a-D-Galp-(1-4)-+ | | | | | | | | | | | | | a-D-Glcp-(1-6)-+ | a-D-Glcp-(1-6)-+ | | a-D-Glcp-(1-4)-+ | b-D-Manp-(1-6)-+ b-D-Manp-(1-6)-+ | | | | | | | | | | | | | | | b-D-Manp-(1-4)-{{{-a-D-Glcp-(1-6)-a-D-Glcp-(1-4)-}}}/n=2/-a-D-Glcp-(1-6)-a-D-Glcp-(1-6)-a-D-Galp-(1-3)-{{{-a-D-Glcp-(1-4)-a-D-Glcp-(1-6)-b-D-Glcp-(1-4)-a-D-Galp-(1-2)-a-D-Manp-(1-4)-a-D-Galp-(1-3)-a-D-Glcp-(1-4)-}}}/n=2/-{{{-a-D-Glcp-(1-4)-}}}/n=163/-a-D-Glcp-(1-6)-+ | | | | | | | -4)-a-D-Glcp-(1-4)-a-D-Glcp-(1-4)-a-D-Glcp-(1-4)-a-D-Glcp-(1- | Show graphically |
Show legend Show as text |
Aspergillus pseudoglaucus SCAU265
(Ancestor NCBI TaxID 1405805,
species name lookup)
Recent studies have found that many marine microbial polysaccharides exhibit distinct immune activity. However, there is a relative scarcity of research on the immunomodulatory activity of marine fungal exopolysaccharides. A novel water-soluble fungal exopolysaccharide ASP-1 was isolated from the fermentation broths of marine coral-associated fungus Aspergillus pseudoglaucus SCAU265, and purified by Diethylaminoethyl-Sepharose-52 (DEAE-52) Fast Flow and Sephadex G-75. Structural analysis revealed that ASP-1 had an average molecular weight of 36.07 kDa and was mainly composed of (1→4)-linked α-D-glucopyranosyl residues, along with highly branched heteropolysaccharide regions containing 1,4,6-glucopyranosyl, 1,3,4-glucopyranosyl, 1,4,6-galactopyranosyl, T(terminal)-glucopyranosyl, T-mannopyranosyl, and T-galactopyranosyl residues. ASP-1 demonstrated significant effects on the proliferation, nitric oxide levels, and the secretion of cytokines TNF-α and IL-6 in macrophage RAW264.7 cells. Metabolomic analysis provided insights into the potential mechanisms of the immune regulation of ASP-1, suggesting its involvement in regulating immune function by modulating amino acid anabolism, particularly arginine synthesis and metabolism. These findings provide fundamental scientific data for further research on its accurate molecular mechanism of immunomodulatory activity.
exopolysaccharide, immunomodulatory activity, amino acid metabolism, coral-associated Aspergillus pseudoglaucus SCAU265
Structure type: cyclic polymer repeating unit ; n=1, 360701H NMR data: Linkage Residue H1 H2 H3 H4 H5 H6 4,4,4,6,4,4,3,4,2,4,6,4,3,4 bDManp 4,4,4,6,4,4,3,4,2,4,6,4,3,6,4 aDGalp 5.29 3.58 3.83 4.19 3.93 3.72 4,4,4,6,4,4,3,4,2,4,6,4,3,6,6,4,6,4 bDManp 4,4,4,6,4,4,3,4,2,4,6,4,3,6,6,4,6,6 aDGlcp 4,4,4,6,4,4,3,4,2,4,6,4,3,6,6,4,6 aDGlcp 4,4,4,6,4,4,3,4,2,4,6,4,3,6,6,4,4 aDGalp 5.29 3.58 3.83 4.19 3.93 3.72 4,4,4,6,4,4,3,4,2,4,6,4,3,6,6,4 aDGlcp 4,4,4,6,4,4,3,4,2,4,6,4,3,6,6,6 aDGlcp 4,4,4,6,4,4,3,4,2,4,6,4,3,6,6 aDGlcp 4,4,4,6,4,4,3,4,2,4,6,4,3,6 aDGlcp 4,4,4,6,4,4,3,4,2,4,6,4,3 aDGalp 4,4,4,6,4,4,3,4,2,4,6,4 aDGlcp 4,4,4,6,4,4,3,4,2,4,6,3,4 bDManp 4,4,4,6,4,4,3,4,2,4,6,3,6,4 aDGalp 5.29 3.58 3.83 4.19 3.93 3.72 4,4,4,6,4,4,3,4,2,4,6,3,6,6,4,6,4 bDManp 4,4,4,6,4,4,3,4,2,4,6,3,6,6,4,6,6 aDGlcp 4,4,4,6,4,4,3,4,2,4,6,3,6,6,4,6 aDGlcp 4,4,4,6,4,4,3,4,2,4,6,3,6,6,4,4 aDGalp 5.29 3.58 3.83 4.19 3.93 3.72 4,4,4,6,4,4,3,4,2,4,6,3,6,6,4 aDGlcp 4,4,4,6,4,4,3,4,2,4,6,3,6,6,6 aDGlcp 4,4,4,6,4,4,3,4,2,4,6,3,6,6 aDGlcp 4,4,4,6,4,4,3,4,2,4,6,3,6 aDGlcp 4,4,4,6,4,4,3,4,2,4,6,3 aDGalp 4,4,4,6,4,4,3,4,2,4,6 aDGlcp 4.91 3.51 3.87 3.51 3.83 3.88 4,4,4,6,4,4,3,4,2,4 bDGlcp 4.81 3.50 4.61 3.51 3.94 3.60 4,4,4,6,4,4,3,4,2,6 bDManp 5.27 3.55 3.64 3.87 4.08 3.46 4,4,4,6,4,4,3,4,2 aDGalp 5.28 3.54 3.81 3.57 3.74 3.60 4,4,4,6,4,4,3,4 aDManp 5.27 3.56 3.92 3.79 3.64 3.75 4,4,4,6,4,4,3,6 bDManp 5.27 3.55 3.64 3.87 4.08 3.46 4,4,4,6,4,4,3 aDGalp 5.28 3.54 3.81 3.57 3.74 3.60 4,4,4,6,4,4 aDGlcp 5.27 3.55 3.89 3.87 3.57 3.66-3.84 4,4,4,6,4 aDGlcp 5.33 3.55 3.73 3.58 3.93 3.69 4,4,4,6,4,4,3,4,2,4,6,4,4 aDGlcp 4.89 3.52 3.58 3.34 3.58 3.69 4,4,4,6 aDGlcp 4,4,4 aDGlcp 4.89 3.57 3.65 3.75 3.85 3.75 4,4,6 aDGlcp 4.89 3.52 3.58 3.34 3.58 3.69 4,4 aDGlcp 4.89 3.57 3.65 3.75 3.85 3.75 4,6 aDGlcp 4.89 3.52 3.58 3.34 3.58 3.69 4 aDGlcp 4.89 3.57 3.65 3.75 3.85 3.75 6 aDGlcp 4.89 3.52 3.58 3.34 3.58 3.69 aDGlcp
1H NMR data:
|
13C NMR data: present in publication with incorrect assignment |
SMILES errors: -4)[aDGlcp(1-4)/[bDManp(1-4)[aDGalp(1-4)[bDManp(1-4)/[aDGlcp(1-6)]aDGlcp(1-6)[aDGalp(1-4)]aDGlcp(1-4)/n=2/[aDGlcp(1-6)]aDGlcp(1-6)]aDGlcp(1-6)]aDGalp(1-3)]aDGlcp(1-4)[bDManp(1-4)[aDGalp(1-4)[bDManp(1-4)/[aDGlcp(1-6)]aDGlcp(1-6)[aDGalp(1-4)]aDGlcp(1-4)/n=2/[aDGlcp(1-6)]aDGlcp(1-6)]aDGlcp(1-6)]aDGalp(1-3)]aDGlcp(1-6)bDGlcp(1-4)[bDManp(1-6)]aDGalp(1-2)aDManp(1-4)[bDManp(1-6)]aDGalp(1-3)aDGlcp(1-4)/n=2//aDGlcp(1-4)/n=163/aDGlcp(1-6)]aDGlcp(1-4)[aDGlcp(1-6)]aDGlcp(1-4)[aDGlcp(1-6)]aDGlcp(1-4)[aDGlcp(1-6)]aDGlcp(1-: SMILES error: number of atoms (~1012) exceeds a structural formula limit (500)
3. (CSDB ID: 41087) | ![]() |
a-D-Glcp-(1-4)-?%a-D-Glcp-(1-6)-+ | -4)-a-D-Glcp-(1-4)-a-D-Glcp-(1-4)-a-D-Glcp-(1- | Show graphically |
Show legend Show as text |
Morchella esculenta
(NCBI TaxID 39407,
species name lookup)
The water-soluble Morchella esculenta polysaccharide 2 (MEP2) was purified and isolated from an aqueous extract of the Morchella esculenta fruiting bodies. MEP2, having a molecular weight of 959 kDa, has a →4)-α-D-Glcp-(1→ glucan backbone, and this branch was substituted at the H-6 position by an α-D-Glcp-(1 → 4)-α-D-Glcp-(1→ residue and an α-D-Glcp-(1→ residue. The hepatoprotective activity and potential mechanism of action of MEP2 were also investigated. MEP2 ameliorated severe liver damage and regulated the liver function indicators and the alcohol-related enzyme levels in chronic alcohol-induced mice. Combined with biochemical detection, the gut microbiota, metabolites, and proteomics results revealed that MEP2 regulates the levels of hepatic cytokines related to inflammatory response and oxidative stress, as well as those of intestinal Bacteroides, Oscillospira, Parabacteroides, Alistipes, and Prevotella, through the ubiquitin-specific peptidase 10 (Usp10)/nuclear factor κB (NF-κB)/nuclear factor erythroid-2 related factor 2 (Nrf2) signaling pathway in the liver of mice induced by long-term alcohol intake. These data provide experimental evidence for the application of MEP2 in chronic alcohol-induced liver injury.
inflammation, oxidative stress, gut microbiota, alcohol liver disease, MEP2, Usp10/NF-kB/Nrf2
Structure type: fragment of a bigger structure ; 95900013C NMR data: Linkage Residue C1 C2 C3 C4 C5 C6 4,4,6,4 aDGlcp 98.61 71.66 72.86 72.75 73.03 60.52 4,4,6 %aDGlcp 4,4 aDGlcp 100.08 71.89 73.49 77.24 71.21 69.40 4 aDGlcp 99.87 71.57 73.37 77.04 71.04 60.61 aDGlcp 1H NMR data: Linkage Residue H1 H2 H3 H4 H5 H6 4,4,6,4 aDGlcp 4.89 3.52 3.58 3.34 3.58 3.62-3.69 4,4,6 %aDGlcp 4,4 aDGlcp 5.29 3.56 3.90 3.58 3.76 3.79-3.92 4 aDGlcp 5.31 3.56 3.88 3.58 3.76 3.76-3.81 aDGlcp 1H/13C HSQC data: Linkage Residue C1/H1 C2/H2 C3/H3 C4/H4 C5/H5 C6/H6 4,4,6,4 aDGlcp 98.61/4.89 71.66/3.52 72.86/3.58 72.75/3.34 73.03/3.58 60.52/3.62-3.69 4,4,6 %aDGlcp 4,4 aDGlcp 100.08/5.29 71.89/3.56 73.49/3.90 77.24/3.58 71.21/3.76 69.40/3.79-3.92 4 aDGlcp 99.87/5.31 71.57/3.56 73.37/3.88 77.04/3.58 71.04/3.76 60.61/3.76-3.81 aDGlcp
1H NMR data:
|
13C NMR data:
|
4. (CSDB ID: 41100) | ![]() |
a-D-Glcp-(1-6)-+ S-6)-a-D-Glcp-(1-6)-+ | | -4)-{{{-a-D-Glcp-(1-4)-}}}{{{-a-D-Glcp-(1-4)-a-D-Glcp-(1-4)-}}}/n=4/-{{{-a-D-Glcp-(1-4)-}}}{{{-a-D-Glcp-(1-4)-a-D-Glcp-(1-4)-}}}/n=2/-{{{-a-D-Glcp-(1-4)-}}}a-D-Glcp-(1- | Show graphically |
Show legend Show as text |
Aspergillus versicolor SCAU141
(Ancestor NCBI TaxID 46472,
species name lookup)
Until now, relatively little is known about marine-derived fungal polysaccharides and their activities. Exopolysaccharide AVP141-A was isolated from the broth of marine-derived fungus Aspergillus versicolor SCAU141 and purified by Diethylaminoethyl-Sepharose Fast Flow and Sephadex G-100. The structural characteristics of AVP141-A was studied by chemical analysis together with high-performance gel permeation chromatography, ion chromatography, Fourier-transform infrared spectroscopy, gas chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy. The results showed that AVP141-A with the molecular weight of 5.10 kDa was mainly composed of →4)-α-D-Glcp-(1→, branched by α-D-Glcp-(1→ and →6)-α-D-Glcp-(1→ at C-6 positions of the glucan backbone. In particular, sulfate ester (approximately 3.62 %) was found in AVP141-A, which was frequently considered to occur in marine-derived microbial polysaccharides rather than other microbial polysaccharides. Furthermore, AVP141-A significantly enhanced the activity of the inflammatory factors NO, COX-2 and TNF-α in RAW264.7 macrophages by activating the MAPK/p38 and NF-κB/p65 pathways. In addition, metabolomic analysis revealed that most of the pathways with significant changes in RAW264.7 macrophages treated with AVP141-A were amino acid-related pathways, and arginine was the characteristic metabolite. In conclusion, this study identified AVP141-A as a marine fungus-derived sulfated exopolysaccharide with potential for development as an immune activator.
marine-derived fungus, amino acid metabolism, RAW264.7 macrophages
Structure type: structural motif or average structure ; 510013C NMR data: Linkage Residue C1 C2 C3 C4 C5 C6 4,4,4,4,4,4,4 aDGlcp 99.97 73.30 70.30 77.52 72.94 60.75 4,4,4,4,4,4 aDGlcp 4,4,4,4,4,6 aDGlcp 98.84 72.99 72.83 69.70 72.97 60.78 4,4,4,4,4 aDGlcp 98.10 74.58 73.14 77.38 74.40 70.42 4,4,4,4 aDGlcp 4,4,4 aDGlcp 4,4,6,6 S 4,4,6 aDGlcp ? 71.56 72.79 71.87 71.40 69.45 4,4 aDGlcp 98.10 74.58 73.14 77.38 74.40 70.42 4 aDGlcp 99.97 73.30 70.30 77.52 72.94 60.75 aDGlcp 1H NMR data: Linkage Residue H1 H2 H3 H4 H5 H6 4,4,4,4,4,4,4 aDGlcp 5.41 3.62 3.73 3.57 3.86 3.75 4,4,4,4,4,4 aDGlcp 4,4,4,4,4,6 aDGlcp 5.00 3.57 3.76 3.45 3.79 3.87 4,4,4,4,4 aDGlcp 4.98 3.58 3.78 3.69 3.87 3.73 4,4,4,4 aDGlcp 4,4,4 aDGlcp 4,4,6,6 S 4,4,6 aDGlcp 5.25 3.59 3.76 3.67 3.88 3.77 4,4 aDGlcp 4.98 3.58 3.78 3.69 3.87 3.73 4 aDGlcp 5.41 3.62 3.73 3.57 3.86 3.75 aDGlcp 1H/13C HSQC data: Linkage Residue C1/H1 C2/H2 C3/H3 C4/H4 C5/H5 C6/H6 4,4,4,4,4,4,4 aDGlcp 99.97/5.41 73.30/3.62 70.30/3.73 77.52/3.57 72.94/3.86 60.75/3.75 4,4,4,4,4,4 aDGlcp 4,4,4,4,4,6 aDGlcp 98.84/5.00 72.99/3.57 72.83/3.76 69.70/3.45 72.97/3.79 60.78/3.87 4,4,4,4,4 aDGlcp 98.10/4.98 74.58/3.58 73.14/3.78 77.38/3.69 74.40/3.87 70.42/3.73 4,4,4,4 aDGlcp 4,4,4 aDGlcp 4,4,6,6 S 4,4,6 aDGlcp ?/5.25 71.56/3.59 72.79/3.76 71.87/3.67 71.40/3.88 69.45/3.77 4,4 aDGlcp 98.10/4.98 74.58/3.58 73.14/3.78 77.38/3.69 74.40/3.87 70.42/3.73 4 aDGlcp 99.97/5.41 73.30/3.62 70.30/3.73 77.52/3.57 72.94/3.86 60.75/3.75 aDGlcp
1H NMR data:
|
13C NMR data:
|
The spectrum also has 1 signal at unknown position (not plotted). |
SMILES errors: -4)/aDGlcp(1-4)/n=?//aDGlcp(1-4)[aDGlcp(1-6)]aDGlcp(1-4)/n=4//aDGlcp(1-4)/n=?//aDGlcp(1-4)[S-6)aDGlcp(1-6)]aDGlcp(1-4)/n=2//aDGlcp(1-4)/n=?/aDGlcp(1-: SMILES error: could not calculate brutto descriptors of a molecule from SMILES [*]O[C@@H]1[C@@H](CO)O[C@H](O[C@@H]2[C@@H](CO)O[C@H](O[C@@H]3[C@@H](CO)O[C@H](O[C@@H]4[C@@H](CO)O[C@H](O[C@@H]5[C@@H](CO[C@H]6O[C@H](CO)[C@@H](O)[C@H](O)[C@H]6O)O[C@H](O[C@@H]6[C@@H](CO)O[C@H](O[C@@H]7[C@@H](CO[C@H]8O[C@H](CO)[C@@H](O)[C@H](O)[C@H]8O)O[C@H](O[C@@H]8[C@@H](CO)O[C@H](O[C@@H]9[C@@H](CO[C@H]%10O[C@H](CO)[C@@H](O)[C@H](O)[C@H]%10O)O[C@H](O[C@@H]%10[C@@H](CO)O[C@H](O[C@@H]%11[C@@H](CO[C@H]%12O[C@H](CO)[C@@H](O)[C@H](O)[C@H]%12O)O[C@H](O[C@@H]%12[C@@H](CO)O[C@H](O[C@@H]%13[C@@H](CO)O[C@H](O[C@@H]%14[C@@H](CO)O[C@H](O[C@@H]%15[C@@H](CO)O[C@H](O[C@@H]%16[C@@H](CO[C@H]%17O[C@H](COS(=O)(=O)O)[C@@H](O)[C@H](O)[C@H]%17O)O[C@H](O[C@@H]%17[C@@H](CO)O[C@H](O[C@@H]%18[C@@H](CO[C@H]%19O[C@H](COS(=O)(=O)O)[C@@H](O)[C@H](O)[C@H]%19O)O[C@H](O[C@@H]%19[C@@H](CO)O[C@H](O[C@@H]%20[C@@H](CO)O[C@H](O[C@@H]%21[C@@H](CO)O[C@H](O[C@@H]%22[C@@H](CO)O[C@H]([*])[C@H](O)[C@H]%22O)[C@H](O)[C@H]%21O)[C@H](O)[C@H]%20O)[C@H](O)[C@H]%19O)[C@H](O)[C@H]%18O)[C@H](O)[C@H]%17O)[C@H](O)[C@H]%16O)[C@H](O)[C@H]%15O)[C@H](O)[C@H]%14O)[C@H](O)[C@H]%13O)[C@H](O)[C@H]%12O)[C@H](O)[C@H]%11O)[C@H](O)[C@H]%10O)[C@H](O)[C@H]9O)[C@H](O)[C@H]8O)[C@H](O)[C@H]7O)[C@H](O)[C@H]6O)[C@H](O)[C@H]5O)[C@H](O)[C@H]4O)[C@H](O)[C@H]3O)[C@H](O)[C@H]2O)[C@H](O)[C@H]1O Invalid SMILES [*]O[C@@H]1[C@@H](CO)O[C@H](O[C@@H]2[C@@H](CO)O[C@H](O[C@@H]3[C@@H](CO)O[C@H](O[C@@H]4[C@@H](CO)O[C@H](O[C@@H]5[C@@H](CO[C@H]6O[C@H](CO)[C@@H](O)[C@H](O)[C@H]6O)O[C@H](O[C@@H]6[C@@H](CO)O[C@H](O[C@@H]7[C@@H](CO[C@H]8O[C@H](CO)[C@@H](O)[C@H](O)[C@H]8O)O[C@H](O[C@@H]8[C@@H](CO)O[C@H](O[C@@H]9[C@@H](CO[C@H]%10O[C@H](CO)[C@@H](O)[C@H](O)[C@H]%10O)O[C@H](O[C@@H]%10[C@@H](CO)O[C@H](O[C@@H]%11[C@@H](CO[C@H]%12O[C@H](CO)[C@@H](O)[C@H](O)[C@H]%12O)O[C@H](O[C@@H]%12[C@@H](CO)O[C@H](O[C@@H]%13[C@@H](CO)O[C@H](O[C@@H]%14[C@@H](CO)O[C@H](O[C@@H]%15[C@@H](CO)O[C@H](O[C@@H]%16[C@@H](CO[C@H]%17O[C@H](COS(=O)(=O)O)[C@@H](O)[C@H](O)[C@H]%17O)O[C@H](O[C@@H]%17[C@@H](CO)O[C@H](O[C@@H]%18[C@@H](CO[C@H]%19O[C@H](COS(=O)(=O)O)[C@@H](O)[C@H](O)[C@H]%19O)O[C@H](O[C@@H]%19[C@@H](CO)O[C@H](O[C@@H] [C@@H](CO)O[C@H](O[C@@H]%21[C@@H](CO)O[C@H](O[C@@H]"[C@@H](CO)O[C@H]([*])[C@H](O)[C@H]"O)[C@H](O)[C@H]%21O)[C@H](O)[C@H] O)[C@H](O)[C@H]%19O)[C@H](O)[C@H]%18O)[C@H](O)[C@H]%17O)[C@H](O)[C@H]%16O)[C@H](O)[C@H]%15O)[C@H](O)[C@H]%14O)[C@H](O)[C@H]%13O)[C@H](O)[C@H]%12O)[C@H](O)[C@H]%11O)[C@H](O)[C@H]%10O)[C@H](O)[C@H]9O)[C@H](O)[C@H]8O)[C@H](O)[C@H]7O)[C@H](O)[C@H]6O)[C@H](O)[C@H]5O)[C@H](O)[C@H]4O)[C@H](O)[C@H]3O)[C@H](O)[C@H]2O)[C@H](O)[C@H]1O
New query | Export IDs | Home | Help |
Execution: 7 sec