Taxonomic group: fungi / Ascomycota
(Phylum: Ascomycota)
Organ / tissue: spores
The structure was elucidated in this paperNCBI PubMed ID: 37834168Publication DOI: 10.3390/ijms241914721Journal NLM ID: 101092791Publisher: Basel, Switzerland: MDPI
Correspondence: D. Guo <guodongs

njnu.edu.cn>; H. Huang <huangh

njnu.edu.cn>
Institutions: School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, NO 1, Wen Yuan Road, Nanjing 210023, China
Ophiocordyceps gracilis (O. gracilis) is a parasitic fungus used in traditional Chinese medicine and functional foods. In this study, a neutral heteropolysaccharide (GSP-1a) was isolated from spores of O. gracilis, and its structure and antioxidant capacities were investigated. GSP-1a was found to have a molecular weight of 72.8 kDa and primarily consisted of mannose (42.28%), galactose (35.7%), and glucose (22.02%). The backbone of GSP-1a was composed of various sugar residues, including →6)-α-D-Manp-(1→, →2,6)-α-D-Manp-(1→, →2,4,6)-α-D-Manp-(1→, →6)-α-D-Glcp-(1→, and →3,6)-α-D-Glcp-(1→, with some branches consisting of →6)-α-D-Manp-(1→ and α-D-Gal-(1→. In vitro, antioxidant activity assays demonstrated that GSP-1a exhibited scavenging effects on hydroxyl radical (•OH), 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid radical cation (ABTS•+), and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•). Moreover, GSP-1a was found to alleviate H2O2-induced oxidative stress in HepG2 cells by reducing the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), while enhancing the activities of superoxide dismutase (SOD). Furthermore, GSP-1a upregulated the mRNA expression of antioxidant enzymes such as Ho-1, Gclm, and Nqo1, and regulated the NRF2/KEAP1 and FNIP1/FEM1B pathways. The findings elucidated the structural types of GSP-1a and provided a reliable theoretical basis for its usage as a natural antioxidant in functional foods or medicine.
polysaccharide, spores, Antioxidant activity, oxidative stress, Ophiocordyceps gracilis
Structure type: structural motif or average structure ; 72800
Location inside paper: table 3, Fig. 4, GSP-1a
Trivial name: a neutral polysaccharide GSP-1a
Methods: 13C NMR, 1H NMR, NMR-2D, methylation, GC-MS, sugar analysis, HPAEC, FTIR, HPLC, extraction, statistical analysis, fermentation, antioxidant activities, cell viability assay, RNA extraction, HPGPC, radical scavenging assay, qRT-PCR, isolation, UV-vis, oxidative stress, SOD, MDA, ROS
Biological activity: GSP-1a exhibits protective effects against H2O2-induced oxidative stress in HepG2 cells. This protective mechanism involved the regulation of the NRF2 and FNIP1 pathways.
Comments, role: NMR temperature was not specified; Predicted model structure of GSP-1a. Published erroneous NMR chemical shifts C4 of -6)aDGlcp(1- (#_aDGlcp 76.75) and subspectra of all aDManp residues were removed by CSDB staff.
NCBI Taxonomy refs (TaxIDs): 2651840
Show glycosyltransferases
NMR conditions: in D2O
[as TSV]
13C NMR data:
Linkage Residue C1 C2 C3 C4 C5 C6
2,6,6,6,6,6 aDManp
2,6,6,6,6,3,6 aDGalp 97.29 71.24 72.09 72.68 74.37 60.39
2,6,6,6,6,3 aDManp
2,6,6,6,6 aDGlcp 97.24 71.03 86.89 ? 75.31 69.59
2,6,6,6,2 aDGalp 97.29 71.24 72.09 72.68 74.37 60.39
2,6,6,6 aDManp
2,6,6 aDManp
2,6 aDGlcp 99.56 73.06 72.81 ? 75.31 69.46
2,2 aDGalp 97.29 71.24 72.09 72.68 74.37 60.39
2,4,6 aDGalp 97.29 71.24 72.09 72.68 74.37 60.39
2,4 aDManp
2 aDManp
6 aDGalp 97.29 71.24 72.09 72.68 74.37 60.39
aDManp
1H NMR data:
Linkage Residue H1 H2 H3 H4 H5 H6
2,6,6,6,6,6 aDManp 5.08 3.95 4.05 3.75 3.78 3.77
2,6,6,6,6,3,6 aDGalp 4.92 3.50 3.74 3.66 4.01 3.71-3.80
2,6,6,6,6,3 aDManp 5.08 3.95 4.05 3.75 3.78 3.77
2,6,6,6,6 aDGlcp 4.98 3.51 4.16 3.94 4.17 3.56-3.91
2,6,6,6,2 aDGalp 4.92 3.50 3.74 3.66 4.01 3.71-3.80
2,6,6,6 aDManp 5.27 4.19 4.11 3.79 3.78 3.75-4.28
2,6,6 aDManp 5.08 3.95 4.05 3.75 3.78 3.77
2,6 aDGlcp 4.84 3.50 3.71 3.94 4.17 3.39-3.83
2,2 aDGalp 4.92 3.50 3.74 3.66 4.01 3.71-3.80
2,4,6 aDGalp 4.92 3.50 3.74 3.66 4.01 3.71-3.80
2,4 aDManp
2 aDManp 5.27 4.19 4.05 3.96 ? 3.76-4.28
6 aDGalp 4.92 3.50 3.74 3.66 4.01 3.71-3.80
aDManp 5.27 4.19 4.11 3.79 3.78 3.75-4.28
1H/13C HSQC data:
Linkage Residue C1/H1 C2/H2 C3/H3 C4/H4 C5/H5 C6/H6
2,6,6,6,6,6 aDManp NMR TSV error 2: unequal length of 13C and 1H datasets
2,6,6,6,6,3,6 aDGalp 97.29/4.92 71.24/3.50 72.09/3.74 72.68/3.66 74.37/4.01 60.39/3.71-3.80
2,6,6,6,6,3 aDManp NMR TSV error 2: unequal length of 13C and 1H datasets
2,6,6,6,6 aDGlcp 97.24/4.98 71.03/3.51 86.89/4.16 ?/3.94 75.31/4.17 69.59/3.56-3.91
2,6,6,6,2 aDGalp 97.29/4.92 71.24/3.50 72.09/3.74 72.68/3.66 74.37/4.01 60.39/3.71-3.80
2,6,6,6 aDManp NMR TSV error 2: unequal length of 13C and 1H datasets
2,6,6 aDManp NMR TSV error 2: unequal length of 13C and 1H datasets
2,6 aDGlcp 99.56/4.84 73.06/3.50 72.81/3.71 ?/3.94 75.31/4.17 69.46/3.39-3.83
2,2 aDGalp 97.29/4.92 71.24/3.50 72.09/3.74 72.68/3.66 74.37/4.01 60.39/3.71-3.80
2,4,6 aDGalp 97.29/4.92 71.24/3.50 72.09/3.74 72.68/3.66 74.37/4.01 60.39/3.71-3.80
2,4 aDManp
2 aDManp NMR TSV error 2: unequal length of 13C and 1H datasets
6 aDGalp 97.29/4.92 71.24/3.50 72.09/3.74 72.68/3.66 74.37/4.01 60.39/3.71-3.80
aDManp NMR TSV error 2: unequal length of 13C and 1H datasets
1H NMR data:
Linkage | Residue | H1 | H2 | H3 | H4 | H5 | H6 |
2,6,6,6,6,6 | aDManp | 5.08 | 3.95 | 4.05 | 3.75 | 3.78 | 3.77 |
2,6,6,6,6,3,6 | aDGalp | 4.92 | 3.50 | 3.74 | 3.66 | 4.01 | 3.71 3.80 |
2,6,6,6,6,3 | aDManp | 5.08 | 3.95 | 4.05 | 3.75 | 3.78 | 3.77 |
2,6,6,6,6 | aDGlcp | 4.98 | 3.51 | 4.16 | 3.94 | 4.17 | 3.56 3.91 |
2,6,6,6,2 | aDGalp | 4.92 | 3.50 | 3.74 | 3.66 | 4.01 | 3.71 3.80 |
2,6,6,6 | aDManp | 5.27 | 4.19 | 4.11 | 3.79 | 3.78 | 3.75 4.28 |
2,6,6 | aDManp | 5.08 | 3.95 | 4.05 | 3.75 | 3.78 | 3.77 |
2,6 | aDGlcp | 4.84 | 3.50 | 3.71 | 3.94 | 4.17 | 3.39 3.83 |
2,2 | aDGalp | 4.92 | 3.50 | 3.74 | 3.66 | 4.01 | 3.71 3.80 |
2,4,6 | aDGalp | 4.92 | 3.50 | 3.74 | 3.66 | 4.01 | 3.71 3.80 |
2,4 | aDManp | |
2 | aDManp | 5.27 | 4.19 | 4.05 | 3.96 | ? | 3.76 4.28 |
6 | aDGalp | 4.92 | 3.50 | 3.74 | 3.66 | 4.01 | 3.71 3.80 |
| aDManp | 5.27 | 4.19 | 4.11 | 3.79 | 3.78 | 3.75 4.28 |
|
13C NMR data:
Linkage | Residue | C1 | C2 | C3 | C4 | C5 | C6 |
2,6,6,6,6,6 | aDManp | |
2,6,6,6,6,3,6 | aDGalp | 97.29 | 71.24 | 72.09 | 72.68 | 74.37 | 60.39 |
2,6,6,6,6,3 | aDManp | |
2,6,6,6,6 | aDGlcp | 97.24 | 71.03 | 86.89 | ? | 75.31 | 69.59 |
2,6,6,6,2 | aDGalp | 97.29 | 71.24 | 72.09 | 72.68 | 74.37 | 60.39 |
2,6,6,6 | aDManp | |
2,6,6 | aDManp | |
2,6 | aDGlcp | 99.56 | 73.06 | 72.81 | ? | 75.31 | 69.46 |
2,2 | aDGalp | 97.29 | 71.24 | 72.09 | 72.68 | 74.37 | 60.39 |
2,4,6 | aDGalp | 97.29 | 71.24 | 72.09 | 72.68 | 74.37 | 60.39 |
2,4 | aDManp | |
2 | aDManp | |
6 | aDGalp | 97.29 | 71.24 | 72.09 | 72.68 | 74.37 | 60.39 |
| aDManp | |
|
 The spectrum also has 2 signals at unknown positions (not plotted). |
There is only one chemically distinct structure:
Taxonomic group: fungi / Ascomycota
(Phylum: Ascomycota)
The structure was elucidated in this paperNCBI PubMed ID: 36535356Publication DOI: 10.1016/j.ijbiomac.2022.12.127Journal NLM ID: 7909578Publisher: Butterworth-Heinemann
Correspondence: R. Huang <huangriming

scau.edu.cn>; X. Zhang <zhangxiaoyong

scau.edu.cn>
Institutions: Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University-United International College, Zhuhai 519087, China, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China, University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
Until now, relatively little is known about marine-derived fungal polysaccharides and their activities. Exopolysaccharide AVP141-A was isolated from the broth of marine-derived fungus Aspergillus versicolor SCAU141 and purified by Diethylaminoethyl-Sepharose Fast Flow and Sephadex G-100. The structural characteristics of AVP141-A was studied by chemical analysis together with high-performance gel permeation chromatography, ion chromatography, Fourier-transform infrared spectroscopy, gas chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy. The results showed that AVP141-A with the molecular weight of 5.10 kDa was mainly composed of →4)-α-D-Glcp-(1→, branched by α-D-Glcp-(1→ and →6)-α-D-Glcp-(1→ at C-6 positions of the glucan backbone. In particular, sulfate ester (approximately 3.62 %) was found in AVP141-A, which was frequently considered to occur in marine-derived microbial polysaccharides rather than other microbial polysaccharides. Furthermore, AVP141-A significantly enhanced the activity of the inflammatory factors NO, COX-2 and TNF-α in RAW264.7 macrophages by activating the MAPK/p38 and NF-κB/p65 pathways. In addition, metabolomic analysis revealed that most of the pathways with significant changes in RAW264.7 macrophages treated with AVP141-A were amino acid-related pathways, and arginine was the characteristic metabolite. In conclusion, this study identified AVP141-A as a marine fungus-derived sulfated exopolysaccharide with potential for development as an immune activator.
marine-derived fungus, amino acid metabolism, RAW264.7 macrophages
Structure type: structural motif or average structure ; 5100
Location inside paper: table 2, Fig. 2G, AVP141-A
Trivial name: polysaccharide AVP141-A
Compound class: EPS
Methods: 13C NMR, 1H NMR, NMR-2D, methylation, sugar analysis, Western blotting, FTIR, extraction, statistical analysis, cell viability assay, HPGPC, immunomodulatory activity analysis, immunofluorescence staining, metabolomics analysis, ROS, IC
Comments, role: possible chemical structure of AVP141-A; NMR temperature was not specified; total number of aDGlcp(1-4) residues ~ 12. Published erroneous NMR chemical shifts of C1 #4,4,6_aDGlcp (91.98) was removed by CSDB staff.
NCBI Taxonomy refs (TaxIDs): 46472
Show glycosyltransferases
NMR conditions: in D2O
[as TSV]
13C NMR data:
Linkage Residue C1 C2 C3 C4 C5 C6
4,4,4,4,4,4,4 aDGlcp 99.97 73.30 70.30 77.52 72.94 60.75
4,4,4,4,4,4 aDGlcp
4,4,4,4,4,6 aDGlcp 98.84 72.99 72.83 69.70 72.97 60.78
4,4,4,4,4 aDGlcp 98.10 74.58 73.14 77.38 74.40 70.42
4,4,4,4 aDGlcp
4,4,4 aDGlcp
4,4,6,6 S
4,4,6 aDGlcp ? 71.56 72.79 71.87 71.40 69.45
4,4 aDGlcp 98.10 74.58 73.14 77.38 74.40 70.42
4 aDGlcp 99.97 73.30 70.30 77.52 72.94 60.75
aDGlcp
1H NMR data:
Linkage Residue H1 H2 H3 H4 H5 H6
4,4,4,4,4,4,4 aDGlcp 5.41 3.62 3.73 3.57 3.86 3.75
4,4,4,4,4,4 aDGlcp
4,4,4,4,4,6 aDGlcp 5.00 3.57 3.76 3.45 3.79 3.87
4,4,4,4,4 aDGlcp 4.98 3.58 3.78 3.69 3.87 3.73
4,4,4,4 aDGlcp
4,4,4 aDGlcp
4,4,6,6 S
4,4,6 aDGlcp 5.25 3.59 3.76 3.67 3.88 3.77
4,4 aDGlcp 4.98 3.58 3.78 3.69 3.87 3.73
4 aDGlcp 5.41 3.62 3.73 3.57 3.86 3.75
aDGlcp
1H/13C HSQC data:
Linkage Residue C1/H1 C2/H2 C3/H3 C4/H4 C5/H5 C6/H6
4,4,4,4,4,4,4 aDGlcp 99.97/5.41 73.30/3.62 70.30/3.73 77.52/3.57 72.94/3.86 60.75/3.75
4,4,4,4,4,4 aDGlcp
4,4,4,4,4,6 aDGlcp 98.84/5.00 72.99/3.57 72.83/3.76 69.70/3.45 72.97/3.79 60.78/3.87
4,4,4,4,4 aDGlcp 98.10/4.98 74.58/3.58 73.14/3.78 77.38/3.69 74.40/3.87 70.42/3.73
4,4,4,4 aDGlcp
4,4,4 aDGlcp
4,4,6,6 S
4,4,6 aDGlcp ?/5.25 71.56/3.59 72.79/3.76 71.87/3.67 71.40/3.88 69.45/3.77
4,4 aDGlcp 98.10/4.98 74.58/3.58 73.14/3.78 77.38/3.69 74.40/3.87 70.42/3.73
4 aDGlcp 99.97/5.41 73.30/3.62 70.30/3.73 77.52/3.57 72.94/3.86 60.75/3.75
aDGlcp
1H NMR data:
Linkage | Residue | H1 | H2 | H3 | H4 | H5 | H6 |
4,4,4,4,4,4,4 | aDGlcp | 5.41 | 3.62 | 3.73 | 3.57 | 3.86 | 3.75 |
4,4,4,4,4,4 | aDGlcp | |
4,4,4,4,4,6 | aDGlcp | 5.00 | 3.57 | 3.76 | 3.45 | 3.79 | 3.87 |
4,4,4,4,4 | aDGlcp | 4.98 | 3.58 | 3.78 | 3.69 | 3.87 | 3.73 |
4,4,4,4 | aDGlcp | |
4,4,4 | aDGlcp | |
4,4,6,6 | S | |
4,4,6 | aDGlcp | 5.25 | 3.59 | 3.76 | 3.67 | 3.88 | 3.77 |
4,4 | aDGlcp | 4.98 | 3.58 | 3.78 | 3.69 | 3.87 | 3.73 |
4 | aDGlcp | 5.41 | 3.62 | 3.73 | 3.57 | 3.86 | 3.75 |
| aDGlcp | |
|
13C NMR data:
Linkage | Residue | C1 | C2 | C3 | C4 | C5 | C6 |
4,4,4,4,4,4,4 | aDGlcp | 99.97 | 73.30 | 70.30 | 77.52 | 72.94 | 60.75 |
4,4,4,4,4,4 | aDGlcp | |
4,4,4,4,4,6 | aDGlcp | 98.84 | 72.99 | 72.83 | 69.70 | 72.97 | 60.78 |
4,4,4,4,4 | aDGlcp | 98.10 | 74.58 | 73.14 | 77.38 | 74.40 | 70.42 |
4,4,4,4 | aDGlcp | |
4,4,4 | aDGlcp | |
4,4,6,6 | S | |
4,4,6 | aDGlcp | ? | 71.56 | 72.79 | 71.87 | 71.40 | 69.45 |
4,4 | aDGlcp | 98.10 | 74.58 | 73.14 | 77.38 | 74.40 | 70.42 |
4 | aDGlcp | 99.97 | 73.30 | 70.30 | 77.52 | 72.94 | 60.75 |
| aDGlcp | |
|
 The spectrum also has 1 signal at unknown position (not plotted). |
SMILES errors: -4)/aDGlcp(1-4)/n=?//aDGlcp(1-4)[aDGlcp(1-6)]aDGlcp(1-4)/n=4//aDGlcp(1-4)/n=?//aDGlcp(1-4)[S-6)aDGlcp(1-6)]aDGlcp(1-4)/n=2//aDGlcp(1-4)/n=?/aDGlcp(1-:
SMILES error: could not calculate brutto descriptors of a molecule from SMILES [*]O[C@@H]1[C@@H](CO)O[C@H](O[C@@H]2[C@@H](CO)O[C@H](O[C@@H]3[C@@H](CO)O[C@H](O[C@@H]4[C@@H](CO)O[C@H](O[C@@H]5[C@@H](CO[C@H]6O[C@H](CO)[C@@H](O)[C@H](O)[C@H]6O)O[C@H](O[C@@H]6[C@@H](CO)O[C@H](O[C@@H]7[C@@H](CO[C@H]8O[C@H](CO)[C@@H](O)[C@H](O)[C@H]8O)O[C@H](O[C@@H]8[C@@H](CO)O[C@H](O[C@@H]9[C@@H](CO[C@H]%10O[C@H](CO)[C@@H](O)[C@H](O)[C@H]%10O)O[C@H](O[C@@H]%10[C@@H](CO)O[C@H](O[C@@H]%11[C@@H](CO[C@H]%12O[C@H](CO)[C@@H](O)[C@H](O)[C@H]%12O)O[C@H](O[C@@H]%12[C@@H](CO)O[C@H](O[C@@H]%13[C@@H](CO)O[C@H](O[C@@H]%14[C@@H](CO)O[C@H](O[C@@H]%15[C@@H](CO)O[C@H](O[C@@H]%16[C@@H](CO[C@H]%17O[C@H](COS(=O)(=O)O)[C@@H](O)[C@H](O)[C@H]%17O)O[C@H](O[C@@H]%17[C@@H](CO)O[C@H](O[C@@H]%18[C@@H](CO[C@H]%19O[C@H](COS(=O)(=O)O)[C@@H](O)[C@H](O)[C@H]%19O)O[C@H](O[C@@H]%19[C@@H](CO)O[C@H](O[C@@H]%20[C@@H](CO)O[C@H](O[C@@H]%21[C@@H](CO)O[C@H](O[C@@H]%22[C@@H](CO)O[C@H]([*])[C@H](O)[C@H]%22O)[C@H](O)[C@H]%21O)[C@H](O)[C@H]%20O)[C@H](O)[C@H]%19O)[C@H](O)[C@H]%18O)[C@H](O)[C@H]%17O)[C@H](O)[C@H]%16O)[C@H](O)[C@H]%15O)[C@H](O)[C@H]%14O)[C@H](O)[C@H]%13O)[C@H](O)[C@H]%12O)[C@H](O)[C@H]%11O)[C@H](O)[C@H]%10O)[C@H](O)[C@H]9O)[C@H](O)[C@H]8O)[C@H](O)[C@H]7O)[C@H](O)[C@H]6O)[C@H](O)[C@H]5O)[C@H](O)[C@H]4O)[C@H](O)[C@H]3O)[C@H](O)[C@H]2O)[C@H](O)[C@H]1O
Invalid SMILES [*]O[C@@H]1[C@@H](CO)O[C@H](O[C@@H]2[C@@H](CO)O[C@H](O[C@@H]3[C@@H](CO)O[C@H](O[C@@H]4[C@@H](CO)O[C@H](O[C@@H]5[C@@H](CO[C@H]6O[C@H](CO)[C@@H](O)[C@H](O)[C@H]6O)O[C@H](O[C@@H]6[C@@H](CO)O[C@H](O[C@@H]7[C@@H](CO[C@H]8O[C@H](CO)[C@@H](O)[C@H](O)[C@H]8O)O[C@H](O[C@@H]8[C@@H](CO)O[C@H](O[C@@H]9[C@@H](CO[C@H]%10O[C@H](CO)[C@@H](O)[C@H](O)[C@H]%10O)O[C@H](O[C@@H]%10[C@@H](CO)O[C@H](O[C@@H]%11[C@@H](CO[C@H]%12O[C@H](CO)[C@@H](O)[C@H](O)[C@H]%12O)O[C@H](O[C@@H]%12[C@@H](CO)O[C@H](O[C@@H]%13[C@@H](CO)O[C@H](O[C@@H]%14[C@@H](CO)O[C@H](O[C@@H]%15[C@@H](CO)O[C@H](O[C@@H]%16[C@@H](CO[C@H]%17O[C@H](COS(=O)(=O)O)[C@@H](O)[C@H](O)[C@H]%17O)O[C@H](O[C@@H]%17[C@@H](CO)O[C@H](O[C@@H]%18[C@@H](CO[C@H]%19O[C@H](COS(=O)(=O)O)[C@@H](O)[C@H](O)[C@H]%19O)O[C@H](O[C@@H]%19[C@@H](CO)O[C@H](O[C@@H] [C@@H](CO)O[C@H](O[C@@H]%21[C@@H](CO)O[C@H](O[C@@H]"[C@@H](CO)O[C@H]([*])[C@H](O)[C@H]"O)[C@H](O)[C@H]%21O)[C@H](O)[C@H] O)[C@H](O)[C@H]%19O)[C@H](O)[C@H]%18O)[C@H](O)[C@H]%17O)[C@H](O)[C@H]%16O)[C@H](O)[C@H]%15O)[C@H](O)[C@H]%14O)[C@H](O)[C@H]%13O)[C@H](O)[C@H]%12O)[C@H](O)[C@H]%11O)[C@H](O)[C@H]%10O)[C@H](O)[C@H]9O)[C@H](O)[C@H]8O)[C@H](O)[C@H]7O)[C@H](O)[C@H]6O)[C@H](O)[C@H]5O)[C@H](O)[C@H]4O)[C@H](O)[C@H]3O)[C@H](O)[C@H]2O)[C@H](O)[C@H]1O