Taxonomic group: fungi / Ascomycota
(Phylum: Ascomycota)
NCBI PubMed ID: 22758352Publication DOI: 10.1021/am300784nJournal NLM ID: 101504991Publisher: American Chemical Society
Correspondence: stefano.farris

unimi.it
Institutions: Centro de Investigación y Formación Agraria Alameda del Obispo, Instituto de Investigación y Formación Agraria y Pesquera (IFAPA), Córdoba, Spain, Department of Food, Environmental and Nutritional Sciences, Packaging Division, University of Milan, Milan, Italy, STAA, Department of Agriculture, University of Sassari, Sassari, Italy, Department of Materials Science, University of Milano Bicocca, Milano, Italy, Department of Chemistry, University of Milan, Milano, Italy
A new antifog coating made of pullulan is described in this work. The antifog properties are discussed in terms of wettability, surface chemistry/morphology, and by quantitative assessment of the optical properties (haze and transparency) before and after fog formation. The work also presents the results of antifog tests simulating the typical storage conditions of fresh foods. In these tests, the antifog efficiency of the pullulan coating was compared with that of two commercial antifog films, whereas an untreated low-density polyethylene (LDPE) film was used as a reference. The obtained results revealed that the pullulan coating behaved as a "wetting enhancer", mainly due to the low water contact angle (~24°), which in turn can be ascribed to the inherent hydrophilic nature of this polysaccharide, as also suggested by the X-ray photoelectron spectroscopy experiments. Unlike the case of untreated LDPE and commercial antifog samples, no discrete water formations (i.e., droplets or stains) were observed on the antifog pullulan coating on refrigeration during testing. Rather, an invisible, continuous and thin layer of water occurred on the biopolymer surface, which was the reason for the unaltered haze and increased transparency, with the layer of water possibly behaving as an antireflection layer. As confirmed by atomic force microscopy analysis, the even deposition of the coating on the plastic substrate compared to the patchy surfacing of the antifog additives in the commercial films is another important factor dictating the best performance of the antifog pullulan coating.
surface, pullulan, packaging, antifog, coating, wetting
Structure type: polymer chemical repeating unit ; 200000
Location inside paper: abstract
Trivial name: pullulan
Compound class: O-polysaccharide, glucan
Contained glycoepitopes: IEDB_140629,IEDB_142488,IEDB_144998,IEDB_146664,IEDB_420419,IEDB_420420,IEDB_420421,IEDB_857742,IEDB_983931,SB_192
Methods: atomic force microscopy, spectrophotometry, optical microscopy, X-ray photoelectron spectroscopy
Related record ID(s): 45035, 45814, 45934, 45961, 46041, 104020
NCBI Taxonomy refs (TaxIDs): 5580Reference(s) to other database(s): GTC:G71532WE
Show glycosyltransferases
There is only one chemically distinct structure: