-3)-a-L-6dgulHepp-(1-3)-a-L-Araf-(1- | Show graphically |
Show legend Show as text |
Structure type: polymer chemical repeating unit
; 4000, n=13
Compound class: CPS
Contained glycoepitopes: IEDB_136907,IEDB_178410
Campylobacter jejuni infection is now the main cause of diarrhea-related illnesses in humans. An efficacious vaccine for the traveler and developing world market would be welcomed. We are engaged in the discovery and characterization of serotype-specific C. jejuni capsule polysaccharides (CPSs) to study their role in virulence and as protective vaccine antigens. Our prototype conjugate vaccine with serotype HS23 CPS (strain 81-176) has been shown to fully protect non-human primates against diarrhea inflicted by C. jejuni HS23, but ultimately, a useful CPS-based vaccine will have to be multivalent. To this end, we describe here the creation of a CPS-conjugate vaccine against C. jejuni serotype HS15. Structural analysis revealed that a repeating block consisting of l-α-arabinofuranose (Ara) and 6-deoxy-l-α-gulo-heptopyranose (6d-gulo-Hep) comprised the CPS of serotype HS15 type strain ATCC 43442 [→3)-α-L-Araf-(1→3)-6d-l-α-gulo-Hepp(1→](n). Strategically, the non-reducing end of the CPS was activated and used in the attachment of CPS to CRM(197) to yield a conjugate vaccine. A serological assessment of the CPS(HS15)-CRM(197) conjugate with an anti-HS15 polyclonal antibody confirmed the conservation of antigenic epitopes, and subsequent inoculation of mice with CPS(HS15)-CRM(197) revealed that this conjugate was indeed capable of raising anti-CPS(HS15) antibodies.
Campylobacter jejuni, capsule polysaccharide, conjugate vaccine, Diarrheal vaccine, 6-deoxy-gulo-heptose
NCBI PubMed ID: 23261782-3)-a-L-6dgulHepp-(1-3)-a-L-Araf-(1- | Show graphically |
Show legend Show as text |
Structure type: polymer chemical repeating unit
Compound class: CPS
Contained glycoepitopes: IEDB_136907,IEDB_178410
Bacterial extracellular polysaccharides are known as a cell-bound capsule, a sheath, or a slime, which is excreted into the environment. They play an important role in virulence of medical bacteria and plant-to-symbiont interaction and are used for serotyping of bacteria and production of vaccines. Some exopolysaccharides have commercial applications in industry, and claims of health benefits have been documented for an increasing number of them. Exopolysaccharides have diverse composition and structure, and some contain sugar and non-sugar components that are found in bacterial carbohydrates only. The present article provides an updated collection of the data on exopolysaccharides of various classes of gram-negative and gram-positive bacteria reported until the end of 2019. When known, biosynthesis pathways of exopolysaccharides are treated in a summary manner. References are made to structure and biosynthesis relatedness between exopolysaccharides of different bacterial taxa as well as between bacterial polysaccharides and mammalian glycosaminoglycans.
polysaccharide structure, Gram-negative bacteria, capsule, Biofilm, polysaccharide biosynthesis, gram-positive bacteria, Monosaccharide composition, Bacterial exopolysaccharide, non-sugar component
Publication DOI: 10.1016/B978-0-12-819475-1.00005-5Campylobacter jejuni is the leading cause of human diarrheal diseases and has been designated as one of highly resistant pathogens by the World Health Organization. The C. jejuni capsular polysaccharides feature broad existence of uncommon 6dHepp residues and have proven to be potential antigens to develop innovative antibacterial glycoconjugation vaccines. To address the lack of synthetic methods for rare 6dHepp architectures of importance, we herein describe a novel and efficient approach for the preparation of uncommon d-/l-6dHepp fluorides that have power as glycosylating agents. The synthesis is achieved by a C1-to-C5 switch strategy relying on radical decarboxylative fluorination of uronic acids arising from readily available allyl d-C-glycosides. To further showcase the application of this protocol, a structurally unique hexasaccharide composed of →3)-β-d-6didoHepp-(1→4)-β-d-GlcpNAc-(1→ units, corresponding to the capsular polysaccharide of C. jejuni strain CG8486 has been assembled for the first time. The assembly is characterized by highly efficient construction of the synthetically challenging β-(1,2-cis)-d-ido-heptopyranoside by inversion of the C2 configuration of β-(1,2-trans)-d-gulo-heptopyranoside, which is conveniently obtained by anchimerically assisted stereoselective glycosylation of the orthogonally protected 6dgulHepp fluoride. Ready accessibility of 6dHepp fluorides and the resulting glycans could serve as a rational starting point for the further development of synthetic vaccines fighting Campylobacter infection.
synthesis, capsular polysaccharides, Campylobacter jejuni, d-/l-6dHepp fluorides
NCBI PubMed ID: 34260212Each microbe has the ability to produce a wide variety of sugar structures that includes some combination of glycolipids, glycoproteins, exopolysaccharides and oligosaccharides. For example, bacteria may synthesize lipooligosaccharides or lipopolysaccharides, teichoic and lipoteichoic acids, N- and O-linked glycoproteins, capsular polysaccharides, exopolysaccharides, poly-N-acetylglycosamine polymers, peptidoglycans, osmoregulated periplasmic glucans, trehalose or glycogen, just to name a few of the more broadly distributed carbohydrates that have been studied. The composition of many of these glycans are typically dissimilar from those described in eukaryotes, both in the seemingly endless repertoire of sugars that microbes are capable of synthesizing, and in the unique modifications that are attached to the carbohydrate residues. Furthermore, strain-to-strain differences in the carbohydrate building blocks used to create these glycoconjugates are the norm, and many strains possess additional mechanisms for turning on and off transferases that add specific monosaccharides and/or modifications, exponentially contributing to the structural heterogeneity observed by a single isolate, and preventing any structural generalization at the species level. In the past, a greater proportion of research effort was directed toward characterizing human pathogens rather than commensals or environmental isolates, and historically, the focus was on microbes that were simple to grow in large quantities and straightforward to genetically manipulate. These studies have revealed the complexity that exists among individual strains and have formed a foundation to better understand how other microbes, hosts and environments further transform the glycan composition of a single isolate. These studies also motivate researchers to further explore microbial glycan diversity, particularly as more sensitive analytical instruments and methods are developed to examine microbial populations in situ rather than in large scale from an enriched nutrient flask. This review emphasizes many of these points using the common foodborne pathogen Campylobacter jejuni as the model microbe.
carbohydrates, polysaccharides, Campylobacter jejuni, glycoconjugates, phase-variation
NCBI PubMed ID: 36250013Campylobacter jejuni is the leading cause of food poisoning in the United States. Surrounding the exterior surface of this bacterium is a capsular polysaccharide (CPS) that helps protect the organism from the host immune system. The CPS is composed of a repeating sequence of common and unusual sugar residues, including relatively rare heptoses. In the HS:5 serotype, we identified four enzymes required for the biosynthesis of GDP-3,6-dideoxy-β-l-ribo-heptose. In the first step, GDP-d-glycero-α-d-manno-heptose is dehydrated to form GDP-6-deoxy-4-keto-α-d-lyxo-heptose. This product is then dehydrated by a pyridoxal phosphate-dependent C3-dehydratase to form GDP-3,6-dideoxy-4-keto-α-d-threo-heptose before being epimerized at C5 to generate GDP-3,6-dideoxy-4-keto-β-l-erythro-heptose. In the final step, a C4-reductase uses NADPH to convert this product to GDP-3,6-dideoxy-β-l-ribo-heptose. These results are at variance with the previous report of 3,6-dideoxy-d-ribo-heptose in the CPS from serotype HS:5 of C. jejuni. We also demonstrated that GDP-3,6-dideoxy-β-l-xylo-heptose is formed using the corresponding enzymes found in the gene cluster from serotype HS:11 of C. jejuni. The utilization of different C4-reductases from other serotypes of C. jejuni enabled the formation of GDP-3,6-dideoxy-α-d-arabino-heptose and GDP-3,6-dideoxy-α-d-lyxo-heptose.
biosynthesis, serotype, capsular polysaccharide, Campylobacter jejuni, 3, 6-dideoxy-heptose
NCBI PubMed ID: 36943186Campylobacter jejuni is the leading cause of food poisoning in North America and Europe. The exterior surface of this bacterium is coated with a capsular polysaccharide (CPS) which enables adherence to the host epithelial cells and evasion of the host immune system. Many strains of C. jejuni can be differentiated from one another by changes in the sequence of the carbohydrates found within the CPS. The CPS structures of serotypes HS:15 and HS:41 of C. jejuni were chemically characterized and found to contain an l-arabinofuranoside moiety in the repeating CPS sequence. Sequence similarity and genome neighborhood networks were used to identify the putative gene cluster within the HS:15 serotype for the biosynthesis of the l-arabinofuranoside fragment. The first enzyme (HS:15.18) in the pathway was found to catalyze the NAD+-dependent oxidation of UDP-α-d-glucose to UDP-α-d-glucuronate, while the second enzyme (HS:15.19) catalyzes the NAD+-dependent decarboxylation of this product to form UDP-α-d-xylose. The UDP-α-d-xylose is then epimerized at C4 by the third enzyme (HS:15.17) to produce UDP-β-l-arabinopyranoside. In the last step, HS:15.16 catalyzes the FADH2-dependent conversion of UDP-β-l-arabinopyranoside into UDP-β-l-arabinofuranoside. The UDP-β-l-arabinopyranoside mutase catalyzed reaction was further interrogated by measurement of a positional isotope exchange reaction within [18O]-UDP-β-l-arabinopyranoside.
biosynthesis, structure, capsular polysaccharide, Campylobacter jejuni
NCBI PubMed ID: 37737649Campylobacter jejuni is a human pathogen and the leading cause of food poisoning in the United States and Europe. Surrounding the exterior surface of this bacterium is a capsular polysaccharide (CPS) that consists of a repeating sequence of common and unusual carbohydrate segments. At least 10 different heptose sugars have thus far been identified in the various strains of C. jejuni. The accepted biosynthetic pathway for the construction of the 6-deoxy-heptoses begins with the 4,6-dehydration of GDP-d-glycero-d-manno-heptose by a dehydratase, followed by an epimerase that racemizes C3 and/or C5 of the product GDP-6-deoxy-4-keto-d-lyxo-heptose. In the final step, a C4-reductase catalyzes the NADPH reduction of the resulting 4-keto product. However, in some strains and serotypes of C. jejuni, there are two separate C4-reductases with different product specificities in the gene cluster for CPS formation. Five pairs of these tandem C4-reductases were isolated, and the catalytic properties were ascertained. In four out of five cases, one of the two C4-reductases is able to catalyze the isomerization of C3 and C5 of GDP-6-deoxy-4-keto-d-lyxo-heptose, in addition to the catalysis of the reduction of C4, thus bypassing the requirement for a separate C3/C5-isomerase. In each case, the 3'-end of the gene for the first C4-reductase contains a poly-G tract of 8-10 guanine residues that may be used to control the expression and/or catalytic activity of either C4-reductase. The three-dimensional structure of the C4-reductase from serotype HS:15, which only does a reduction of C4, was determined to 1.45 A resolution in the presence of NADPH and GDP.
serotype, capsular polysaccharide, Campylobacter jejuni, 6-deoxy-heptoses, C4-reductases
NCBI PubMed ID: 36534477Campylobacter jejuni is the leading cause of food poisoning in North America. The exterior surface of this bacterium is coated with a capsular polysaccharide (CPS) that consists of a repeating sequence of 2-5 different carbohydrates that is anchored to the outer membrane. Heptoses of various configurations are among the most common monosaccharides that have been identified within the CPS. It is currently thought that all heptose variations derive from the modification of GDP-d-glycero-α-d-manno-heptose (GMH). From the associated gene clusters for CPS biosynthesis, we have identified 20 unique enzymes with different substrate profiles that are used by the various strains and serotypes of C. jejuni to make six different stereoisomers of GDP-6-deoxy-heptose, four stereoisomers of GDP-d-glycero-heptoses, and two stereoisomers of GDP-3,6-dideoxy-heptoses starting from d-sedoheptulose-7-phosphate. The modification enzymes include a C4-dehydrogenase, a C4,6-dehydratase, three C3- and/or C5-epimerases, a C3-dehydratase, eight C4-reductases, two pyranose/furanose mutases, and four enzymes for the formation of GMH from d-sedoheptulose-7-phosphate. We have mixed these enzymes in different combinations to make novel GDP-heptose modifications, including GDP-6-hydroxy-heptoses, GDP-3-deoxy-heptoses, and GDP-3,6-dideoxy-heptoses.
biosynthesis, capsular polysaccharide, Campylobacter jejuni, modification, 6-deoxy-heptose
NCBI PubMed ID: 37890137New query | Export IDs | Home | Help |
Execution: 3 sec