a-Neup5Ac-(2-6)-b-D-Galp-(1-4)-b-D-GlcpNAc-(1-3)-+ | -6)-b-D-Galp-(1-3)-b-D-Galp-(1-4)-b-D-Glcp-(1- | Show graphically |
Show legend Show as text |
Structure type: polymer chemical repeating unit
Compound class: CPS
Contained glycoepitopes: IEDB_130646,IEDB_130697,IEDB_135813,IEDB_136044,IEDB_136794,IEDB_137340,IEDB_137472,IEDB_137776,IEDB_140108,IEDB_140122,IEDB_141794,IEDB_141807,IEDB_142487,IEDB_142488,IEDB_146100,IEDB_146664,IEDB_149174,IEDB_151531,IEDB_158551,IEDB_190606,IEDB_2218591,IEDB_548866,IEDB_548869,IEDB_983931,SB_126,SB_132,SB_165,SB_166,SB_170,SB_171,SB_172,SB_173,SB_187,SB_192,SB_195,SB_30,SB_6,SB_7,SB_84,SB_88
The capsular polysaccharide (CPS) of Streptococcus suis serotype 14 was purified, chemically modified, and characterized. Sugar and absolute configuration analyses gave the following CPS composition: D-Gal, 3; D-Glc, 1; D-GlcNAc, 1; D-Neu5Ac, 1. The Sambucus nigra lectin, which recognizes the Neu5Ac(α2-6)Gal/GalNAc sequence, showed binding to the native CPS. Sialic acid was found to be terminal, and the CPS was quantitatively desialylated by mild acid hydrolysis. It was also submitted to periodate oxidation followed by borohydride reduction and Smith degradation. Sugar and methylation analyses, (1)H and (13)C nuclear magnetic resonance, and mass spectrometry of the native CPS or of its specifically modified products allowed to determine the repeating unit sequence: [6)[Neu5Ac(α2-6)Gal(β1-4)GlcNAc(β1-3)]Gal(β1-3)Gal(β1-4)Glc(β1 -](n). S. suis serotype 14 CPS has an identical sialic acid-containing side chain as serotype 2 CPS, but differs by the absence of rhamnose in its composition. The same side chain is also present in group B Streptococcus type Ia CPS, except that in the latter sialic acid is 2,3- rather than 2,6-linked to the following galactose. A correlation between the S. suis CPS sequence and genes of the serotype 14 cps locus encoding putative glycosyltransferases and polymerase responsible for the biosynthesis of the repeating unit is proposed.
chemical modification, nuclear magnetic resonance (NMR), mass spectrometry (MS), repeating unit sequence, Streptococcus suis serotype 14
NCBI PubMed ID: 23527632The capsular polysaccharide (CPS) is a major virulence factor in many encapsulated pathogens, as it is the case for Streptococcus suis, an important swine pathogen and emerging zoonotic agent. Moreover, the CPS is the antigen at the origin of S. suis classification into serotypes. Hence, analyses of the CPS structure are an essential step to dissect its role in virulence and the serological relations between important serotypes. Here, the CPSs of serotypes 1 and 1/2 were purified and characterized for the first time. Chemical and spectroscopic data gave the following repeating unit sequences: [6)[Neu5Ac(α2-6)GalNAc(β1-4)GlcNAc(β1-3)]Gal(β1-3)Gal(β1-4)Glc(β1-]n (serotype 1) and [4)[Neu5Ac(α2-6)GalNAc(β1-4)GlcNAc(β1-3)]Gal(β1-4)[Gal(α1-3)]Rha(β1-4)Glc(β1-]n (serotype 1/2). The Sambucus nigra lectin, which recognizes the Neu5Ac(α2-6)Gal/GalNAc sequence, showed binding to both CPSs. Compared with previously characterized serotype 14 and 2 CPSs, N-acetylgalactosamine replaces galactose as the sugar bearing the sialic acid residue in the side chain. Serological analyses of the cross-reaction of serotype 1/2 with serotypes 1 and 2 and that between serotypes 1 and 14 suggested that the side chain, and more particularly the terminal sialic acid, constitutes one important epitope for serotypes 1/2 and 2. The side chain is also an important serological determinant for serotype 1, yet sialic acid seems to play a limited role. In contrast, the side chain does not seem to be part of a major epitope for serotype 14. These results contribute to the understanding of the relationship between S. suis serotypes and provide the basis for improving diagnostic tools.
polysaccharide, Streptococcus, sialic acid, carbohydrate structure, immunochemistry, chemical biology, Streptococcus suis
NCBI PubMed ID: 26912653Streptococcus suis serotype 3 is counted among the S. suis serotypes causing clinical disease in pigs. Yet, limited information is available on this serotype. Here we determined for the first time the chemical composition and structure of serotype 3 capsular polysaccharide (CPS), a major bacterial virulence factor and the antigen at the origin of S. suis classification into serotypes. Chemical and spectroscopic data gave the repeating unit sequence for serotype 3: [4)D-GlcA (β1-3)d-QuiNAc4NAc(β1-]n. To the best of our knowledge, this is the first report of di-N-acetyl-d-bacillosamine (QuiNAc4NAc) containing polysaccharides in Streptococci and the second time this rare diamino sugar has been observed in a Gram-positive bacterial species since its initial report. This led to the identification of homologues of UDP-QuiNAc4NAc synthesis genes in S. suis serotype 18. Thus, the repeating unit sequence for serotype 18 is: [3)d-GalNAc(α1-3)[d-Glc (β1-2)]d-GalA4OAc(β1-3)d-GalNAc(α1-3)d-QuiNAc4NAc(α1-]n. A correlation between S. suis serotypes 3 and 18 CPS sequences and genes of these serotypes' cps loci encoding putative glycosyltransferases and polymerase responsible for the biosynthesis of the repeating unit was tentatively established. Knowledge of CPS structure and composition will contribute to better dissect the role of this bacterial component in the pathogenesis of S. suis serotypes 3 and 18.
polysaccharide, capsular polysaccharide, polysaccharides, carbohydrate structure, Streptococcus suis, Di-N-Acetyl-bacillosamine, Serotype 18, Serotype 3
NCBI PubMed ID: 30014879The capsular polysaccharide (CPS) represents a key virulence factor for most encapsulated streptococci. Streptococcus suis and Group B Streptococcus (GBS) are both well-encapsulated pathogens of clinical importance in veterinary and/or human medicine and responsible for invasive systemic diseases. S. suis and GBS are the only Gram-positive bacteria which express a sialylated CPS at their surface. An important difference between these two sialylated CPSs is the linkage between the side-chain terminal galactose and sialic acid, being α-2,6 for S. suis but α-2,3 for GBS. It is still unclear how sialic acid may affect CPS production and, consequently, the pathogenesis of the disease caused by these two bacterial pathogens. Here, we investigated the role of sialic acid and the putative effect of sialic acid linkage modification in CPS synthesis using inter-species allelic exchange mutagenesis. To this aim, a new molecular biogenetic approach to express CPS with modified sialic acid linkage was developed. We showed that sialic acid (and its α-2,6 linkage) is crucial for S. suis CPS synthesis, whereas for GBS, CPS synthesis may occur in presence of an α-2,6 sialyltransferase or in absence of sialic acid moiety. To evaluate the effect of the CPS composition/structure on sialyltransferase activity, two distinct capsular serotypes within each bacterial species were compared (S. suis serotypes 2 and 14 and GBS serotypes III and V). It was demonstrated that the observed differences in sialyltransferase activity and specificity between S. suis and GBS were serotype unrestricted. This is the first time that a study investigates the interspecies exchange of capsular sialyltransferase genes in Gram-positive bacteria. The obtained mutants represent novel tools that could be used to further investigate the immunomodulatory properties of sialylated CPSs. Finally, in spite of common CPS structural characteristics and similarities in the cps loci, sialic acid exerts differential control of CPS expression by S. suis and GBS.
phenotype, capsular polysaccharide, group B Streptococcus, infectious disease, specificity, sialyltransferase, Streptococcus suis, 3 sialic acid, 6 sialic acid, alpha-2
NCBI PubMed ID: 29666608Streptococcus suis serotypes 7 and 8 are counted among the top six S. suis serotypes causing clinical disease in pigs. Yet, limited information is available on these serotypes. Since S. suis serotyping system is based upon capsular polysaccharide (CPS) antigenicity and the CPS is considered a major virulence factor for encapsulated pathogens, here we determined for the first time the chemical compositions and structures of serotypes 7 and 8 CPSs. Chemical and spectroscopic data gave the following repeating unit sequences: [3)L-Rha(α1-P-2)D-Gal(α1-4)D-GlcA(β1-3)D-FucNAc4N(α1-]n for serotype 7 and [2)L-Rha(α1-P-4)D-ManNAc(β1-4)D-Glc(α1-]n for serotype 8. As serotype 8 CPS is identical to Streptococcus pneumoniae type 19F CPS, dot-blot analyses showed a strong reaction of the 19F polysaccharide with reference anti-S. suis serotype 8 rabbit serum. A correlation between S. suis serotypes 7 and 8 sequences and genes of those serotypes' loci encoding putative glycosyltransferases and polymerases responsible for the biosynthesis of the repeating units was tentatively established. Knowledge of CPS structure and composition will contribute to better dissect the role of this bacterial component in the pathogenesis of the disease caused by S. suis serotypes 7 and 8.
capsular polysaccharide, carbohydrate structure, Serotype 8, Streptococcus suis, Serotype 7
NCBI PubMed ID: 30605786Streptococcus suis serotype 2 is an encapsulated bacterium and an important swine pathogen. Opsonizing antibody responses targeting capsular polysaccharides (CPSs) are protective against extracellular pathogens. To elucidate the protective activity of monoclonal antibodies (mAbs) directed against S. suis serotype 2 CPS, mice were immunized with a serotype 2 CPS-glycoconjugate and three hybridomas were isolated; of which, two were murine IgMs and the other a murine IgG1. Whereas the IgMs (mAbs 9E7 and 13C8) showed different reactivity levels with S. suis serotypes 1, 1/2, 2 and 14, the IgG1 (mAb 16H11) was shown to be serotype 2-specific. All mAbs targeted the sialylated chain of the CPSs. Using an opsonophagocytosis assay, the IgMs were opsonizing towards the S. suis serotypes to which they cross-react, while the IgG1 failed to induce bacterial elimination. In a model of mouse passive immunization followed by a lethal challenge with S. suis serotype 2, the IgG1 and IgM cross-reacting only with serotype 14 (mAb 13C8) failed to protect, while the IgM cross-reacting with serotypes 1, 1/2, and 14 (mAb 9E7) was shown to be protective by limiting bacteremia. These new mAbs show promise as new S. suis diagnostic tools, as well as potential for therapeutic applications.
capsular polysaccharide, monoclonal antibody, Streptococcus suis, Opsonophagocytosis, serotype 2
NCBI PubMed ID: 31500262Streptococcus suis is an encapsulated bacterium and one of the most important swine pathogens and a zoonotic agent for which no effective vaccine exists. Bacterial capsular polysaccharides (CPSs) are poorly immunogenic, but anti-CPS antibodies are essential to the host defense against encapsulated bacteria. In addition to the previously known serotypes 2 and 14, which are nonimmunogenic, we have recently purified and described the CPS structures for serotypes 1, 1/2, 3, 7, 8, and 9. Here, we aimed to elucidate how these new structurally diverse CPSs interact with the immune system to generate anti-CPS antibody responses. CPS-stimulated dendritic cells produced significant levels of C-C motif chemokine ligand 3 (CCL3), partially via Toll-like receptor 2 (TLR2)- and myeloid differentiation factor 88-dependent pathways, and CCL2, via TLR-independent mechanisms. Mice immunized with purified serotype 3 CPS adjuvanted with TiterMax Gold produced an opsonizing IgG response, whereas other CPSs or adjuvants were negative. Mice hyperimmunized with heat-killed S. suis serotypes 3 and 9 both produced anti-CPS type 1 IgGs, whereas serotypes 7 and 8 remained negative. Also, mice infected with sublethal doses of S. suis serotype 3 produced primary anti-CPS IgM and IgG responses, of which only IgM were boosted after a secondary infection. In contrast, mice sublethally infected with S. suis serotype 9 produced weak anti-CPS IgM and IgG responses following a secondary infection. This study provides important information on the divergent evolution of CPS serotypes with highly different structural and/or biochemical properties within S. suis and their interaction with the immune system.
capsular polysaccharide, immunogenicity, Streptococcus suis, Serotype 3
NCBI PubMed ID: 32747605Bacterial extracellular polysaccharides are known as a cell-bound capsule, a sheath, or a slime, which is excreted into the environment. They play an important role in virulence of medical bacteria and plant-to-symbiont interaction and are used for serotyping of bacteria and production of vaccines. Some exopolysaccharides have commercial applications in industry, and claims of health benefits have been documented for an increasing number of them. Exopolysaccharides have diverse composition and structure, and some contain sugar and non-sugar components that are found in bacterial carbohydrates only. The present article provides an updated collection of the data on exopolysaccharides of various classes of gram-negative and gram-positive bacteria reported until the end of 2019. When known, biosynthesis pathways of exopolysaccharides are treated in a summary manner. References are made to structure and biosynthesis relatedness between exopolysaccharides of different bacterial taxa as well as between bacterial polysaccharides and mammalian glycosaminoglycans.
polysaccharide structure, Gram-negative bacteria, capsule, Biofilm, polysaccharide biosynthesis, gram-positive bacteria, Monosaccharide composition, Bacterial exopolysaccharide, non-sugar component
Publication DOI: 10.1016/B978-0-12-819475-1.00005-5The capsular polysaccharide (CPS) of Streptococcus suis defines various serotypes based on its composition and structure. Though serotype switching has been suggested to occur between S. suis strains, its impact on pathogenicity and virulence remains unknown. Herein, we experimentally generated S. suis serotype-switched mutants from a serotype 2 strain that express the serotype 3, 4, 7, 8, 9, or 14 CPS. The effects of serotype switching were then investigated with regards to classical properties conferred by presence of the serotype 2 CPS, including adhesion to/invasion of epithelial cells, resistance to phagocytosis by macrophages, killing by whole blood, dendritic cell-derived pro-inflammatory mediator production and virulence using mouse and porcine infection models. Results demonstrated that these properties on host cell interactions were differentially modulated depending on the switched serotypes, although some different mutations other than loci of CPS-related genes were found in each the serotype-switched mutant. Among the serotype-switched mutants, the mutant expressing the serotype 8 CPS was hyper-virulent, whereas mutants expressing the serotype 3 or 4 CPSs had reduced virulence. By contrast, switching to serotype 7, 9, or 14 CPSs had little to no effect. These findings suggest that serotype switching can drastically alter S. suis virulence and host cell interactions.
disease, Bacterial, virulence, serotype, capsular polysaccharide, Streptococcus suis, animal health
NCBI PubMed ID: 33753801Streptococcus suis bacteria are one of the most serious health problems for pigs and an emerging zoonotic agent in humans working in the swine industry. S. suis bacteria express capsular polysaccharides (CPS) a major bacterial virulence factor that define the serotypes. Oligosaccharides resembling the CPS of S. suis serotypes 2, 3, 9, and 14 have been synthesized, glycans related to serotypes 2 and 9 were placed on glycan array surfaces to screen blood from infected pigs. Lead antigens for the development of semi-synthetic S. suis serotypes 2 and 9 glycoconjugate veterinary vaccines were identified in this way.
carbohydrates, Oligosaccharides, immunology, glycans, total synthesis, Streptococcus suis
NCBI PubMed ID: 33852172Streptococcus suis is an encapsulated, commensal, potentially pathogenic bacterium that infects swine globally and causes sporadic life-threatening zoonotic septicemia and meningitis infections in humans. The capsular polysaccharide is a primary virulence factor for S. suis. As S. suis serotype 2 is the most prevalent serotype globally, the serotype 2 CPS is the primary target of current efforts to develop an effective glycoconjugate veterinary vaccine against S. suis. Possible cross-protection with related serotypes would broaden the coverage of a vaccine. The CPS in serotypes 2 and 1/2 differ at a single residue (Gal versus GalNAc), and both are similar to serotypes 1 and 14: all contain a terminal sialic acid on a side chain. However, despite this similarity, there is complex pattern of cross-protection for these serotypes, with varying estimations of the importance of sialic acid in a protective epitope. Further, a pentasaccharide without the terminal sialic acid has been identified as minimal epitope for serotype 2. Here we use molecular simulation to model the molecule conformations of the CPS in serotypes 2, 1/2, 1 and 14, as well as three vaccine candidate oligosaccharides. The common epitopes we identify assist in rationalizing the apparently contradictory immunological data and provide a basis for rational design of S. suis vaccines in the future
conformation, antigen, capsular polysaccharide, carbohydrate epitopes, cross protection, Streptococcus suis, molecular modelling and simulation
NCBI PubMed ID: 35211512New query | Export IDs | Home | Help |
Execution: 7 sec