Taxonomic group: bacteria / Proteobacteria
(Phylum: Proteobacteria)
Associated disease: infection due to Escherichia coli [ICD11:
XN6P4 
]
Publication DOI: 10.1070/RCR4856Journal NLM ID: 0404506Publisher: London: Chemical Society
Correspondence: Yu.A. Knirel <yknirel

gmail.com>
Institutions: N.D. Zelinskii Institute of Organic Chemistry, Russian Academy of Sciences
This review is devoted to methods for the selective cleavage of glycosidic bonds. The mechanisms of reactions underlying these methods are considered and examples of their practical application in the structural analysis of bacterial polysaccharides are given. Specific methods for the selective cleavage of polysaccharides, remaining relevant for researchers, include the Smith degradation based on destruction of monosaccharides containing vicinal diol groups, dephosphorylation of phosphate-containing polysaccharides with hydrofluoric acid and the hydrolytic cleavage of glycosyl phosphate bonds in the latter compounds. Non-specific methods, including partial acid hydrolysis, acetolysis and solvolysis with anhydrous organic (CF3SO3H, MeSO3H, CF3CO2H) and inorganic (HF) acids do not make any specific demands on the composition and structure of the polysaccharide and are sensitive to its fine structural features. The review addesses the issue of stability of glycosidic bonds in various monosaccharides to reagents used for non-specific selective cleavage.
structural analysis, Bacterial polysaccharide, selective cleavage, glycosidic bond
Structure type: suggested polymer biological repeating unit
Location inside paper: p.411, scheme 13, compound 19
The structure in this paper was incorrect:
Compound class: O-polysaccharide, core oligosaccharide, O-antigen
Contained glycoepitopes: IEDB_130701,IEDB_136044,IEDB_136105,IEDB_137472,IEDB_141794,IEDB_141807,IEDB_144983,IEDB_150899,IEDB_151531,IEDB_152206,IEDB_190606,IEDB_225177,IEDB_885823,IEDB_983930,SB_137,SB_165,SB_166,SB_187,SB_195,SB_29,SB_44,SB_67,SB_7,SB_72,SB_88
Methods: partial acid hydrolysis, HF solvolysis, acid hydrolysis, mild acid hydrolysis, alkaline degradation, b-elimination, Smith degradation, deamination, de-O-acetylation, HF treatment, reduction with NaBD4, triflic acid solvolysis, acetolysis, Li/ethylenediamine degradation, hydrazinolysis, reduction with NaBH4, mild acid degradation, trifluoroacetic acid solvolysis, partial solvolysis with anhydrous trifluoroacetic acid, de-N-acetylation with hydrazine, part acid hydrolysis, HF solvolysis; published polymerization frame was shifted for conformity with other records.
Comments, role: review; OPS structure from ref. [26]
Related record ID(s): 1386, 1387
NCBI Taxonomy refs (TaxIDs): 2162916Reference(s) to other database(s): GTC:G47971KQ, GlycomeDB:
27141
Show glycosyltransferases
There is only one chemically distinct structure: