The investigation of tetrabromobisphenol A (TBBPA) removal by Phanerochaete chrysosporium (P. chrysosporium) was conducted. Under optimal conditions (pH 5, inoculum size of 5% (v/v), initial glucose concentration of 5 g/L, TBBPA concentration of 5 mg/L), >97% of initial TBBPA was removed after 3 days. The TBBPA metabolites, tetrabromobisphenol A glycoside, tribromobisphenol A glycoside and monohydroxylated tetrabromobisphenol A, were identified for the first time by fungi transformation as being produced by glycosylation and oxidative hydroxylation, respectively. Proteome analysis showed that P. chrysosporium significantly upregulated cytochrome P450 monooxygenase, glutathione S-transferases, UDP-glucosyltransferase, O‑methyltransferase and other oxidoreductases for TBBPA oxidative hydroxylation, reductive debromination, glycosylation, O‑methylation and oxidative cleavage for detoxification. Data from cytotoxicity tests with human hepatocellular liver carcinoma (HepG2) confirmed that TBBPA toxicity was effectively decreased by P. chrysosporium treatment. Bioaugmentation with P. chrysosporium significantly improved the removal efficiency of TBBPA in water microcosms to 63.1% within 12 h. This study suggests that P. chrysosporium might be suitable for the removal of TBBPA from contaminated water.
Proteomics, Phanerochaete chrysosporium, TBBPA glycoside, tetrabromobisphenol A, tri-BBPA glycoside
NCBI PubMed ID: 31096345Publication DOI: 10.1016/j.scitotenv.2018.12.446Journal NLM ID: 0330500Publisher: Amsterdam: Elsevier
Correspondence: Yin H
Institutions: Department of Chemistry, Jinan University, Guangzhou, China, Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou, China
Methods: HPLC, enzymatic digestion, extraction, ESI-QTOF-MS, RP-HPLC, cell growth, HR-ESI-MS, cytotoxicity assay, precipitation, Bradford method, sonication, LC, centrifugation