Taxonomic group: fungi / Ascomycota
(Phylum: Ascomycota)
NCBI PubMed ID: 21506649Publication DOI: 10.1586/erv.11.30Journal NLM ID: 101155475Publisher: Abingdon, Oxford: Taylor & Francis
Correspondence: Petrovsky N <nikolai.petrovsky

flinders.edu.au>
Institutions: Department of Diabetes and Endocrinology, Flinders Medical Centre/Flinders University, Adelaide,Australia, Vaxine Pty Ltd, Bedford Park, Adelaide, Australia, Cancer Research Laboratory, ANU Medical School, The Canberra Hospital, Garran, Australia
The role for adjuvants in human vaccines has been a matter of vigorous scientific debate, with the field hindered by the fact that for over 80 years, aluminum salts were the only adjuvants approved for human use. To this day, alum-based adjuvants, alone or combined with additional immune activators, remain the only adjuvants approved for use in the USA. This situation has not been helped by the fact that the mechanism of action of most adjuvants has been poorly understood. A relative lack of resources and funding for adjuvant development has only helped to maintain alum's relative monopoly. To seriously challenge alum's supremacy a new adjuvant has many major hurdles to overcome, not least being alum's simplicity, tolerability, safety record and minimal cost. Carbohydrate structures play critical roles in immune system function and carbohydrates also have the virtue of a strong safety and tolerability record. A number of carbohydrate compounds from plant, bacterial, yeast and synthetic sources have emerged as promising vaccine adjuvant candidates. Carbohydrates are readily biodegradable and therefore unlikely to cause problems of long-term tissue deposits seen with alum adjuvants. Above all, the Holy Grail of human adjuvant development is to identify a compound that combines potent vaccine enhancement with maximum tolerability and safety. This has proved to be a tough challenge for many adjuvant contenders. Nevertheless, carbohydrate-based compounds have many favorable properties that could place them in a unique position to challenge alum's monopoly over human vaccine usage.
carbohydrate, vaccines, immunity, glucan, inulin, Glycomics, adjuvants
Structure type: homopolymer
Location inside paper: Table I, p. 526
Trivial name: glucan, β-1,3-glucan, curdlan, curdlan-type polysaccharide 13140, paramylon, curdlan, laminarin, β-glucan, curdlan, β-(1,3)-glucan, β-(1,3)-glucan, curdlan, curdlan, β-1,3-glucan, paramylon, reserve polysaccharide, b-glucan, β-1,3-D-glucan, laminaran, botryosphaeran, laminaran type β-D-glucan, latiglucan I, pachymaran, Curdlan, zymosan A, β-glucan, curdlan, laminarin, zymosan, zymosan, glucan particles, zymosan, β-(1-3)-glucan, β-(1,3)-glucan, β-(1,3)glucan, pachymaran, D-glucan (DPn)540, pachyman, laminaran, curdlan, zymosan, zymosan, β-(1,3)-glucan, zymosan A, zymosan, β-1,3-glucan, curdlan, β-1,3-glucan, curdlan, β-1,3-glucan, curdlan, pachyman, β-(1,3)-glucan, curdlan, callose, a water-insoluble β-(1→3)-glucan, fermentum β-polysaccharide, water-insoluble glucan, callose, laminarin, alkali-soluble β-glucan (PeA3), alkali-soluble polysaccharide (PCAP)
Compound class: EPS, O-polysaccharide, cell wall polysaccharide, lipophosphoglycan, glycoprotein, LPG, glucan, cell wall glucan, polysaccharide, glycoside, β-glucan, β-1, 3-glucan
Contained glycoepitopes: IEDB_1397514,IEDB_142488,IEDB_146664,IEDB_153543,IEDB_158555,IEDB_161166,IEDB_558869,IEDB_857743,IEDB_983931,SB_192
Biological activity: NF-kB labilizes during binding TLR-2 and Dectin-1 on monocytes by zymosan. Activating NF-kB induces inflammatory cytokine production, arachidonate mobilization, protein phosphorylation and inositol phosphate formation. Glucan particles phagocytosed by DCs via the Dectin-1 receptor and induces cytokine production.
Comments, role: Review.
Related record ID(s): 43553, 47304, 47707, 48305, 48371, 48410, 48411, 48472, 49256, 49257, 49258, 49266, 49290
NCBI Taxonomy refs (TaxIDs): 4932Reference(s) to other database(s): GTC:G51056AN, GlycomeDB:
157, CCSD:
50049, CBank-STR:4225, CA-RN: 51052-65-4, GenDB:FJ3380871.1
Show glycosyltransferases
There is only one chemically distinct structure: