Found 3 publications. Displayed publications from 1 to 3
Expand all publications       Show all as text (SweetDB notation)

1. (Article ID: 5280)
 
Cui JD, Qiu JQ
Production of extracellular water-insoluble polysaccharide from Pseudomonas sp.
Journal of Agricultural and Food Chemistry 60(19) (2012) 4865-4871
 

Curdlan is a microbial polysaccharide composed exclusively of β-(1,3)-linked glucose residues. Until now only bacteria belonging to the Alcaligenes and Agrobacterium species have been reported to produce Curdlan. In this study, a bacterium capable of producing extracellular Curdlan, identified as Pseudomonas sp. on the basis of 16S rDNA gene sequencing, was isolated from soil samples. From the HPLC, permethylation linkage analysis, 13C NMR, and FT-IR analytical data, the polysaccharide consisted exclusively of glucose; the most prominent sugar was 1,3-linked glucose, and most glycosidic bonds joining these sugar residues were of the β-type. This also supported that the exopolysaccharide produced by Pseudomonas sp. was actually Curdlan. In addition, the Pseudomonas sp. was studied for the production of Curdlan by conventional "one-factor-at-a-time technique" and response surface methodology (RSM). It was observed that glucose and yeast extract were the most suitable carbon source and nitrogen source for Curdlan production, respectively. By using RSM, Curdlan production was increased significantly by 188%, from 1.25 to 2.35 g/L, when the strain was cultivated in the optimal condition developed by RSM, and the highest Curdlan production rate of 0.81 g/(L h) was obtained. To the best of the authors' knowledge, this is the first report on Curdlan production by Pseudomonas sp.

Pseudomonas, production, optimization, Curdlan, insoluble polysaccharide

The publication contains the following compound(s):
 

Expand this publication
2. (Article ID: 5339)
 
Seeliger JC, Holsclaw CM, Schelle MW, Botyanszki Z, Gilmore SA, Tully SE, Niederweis M, Cravatt BF, Leary JA, Bertozzi CR
Elucidation and chemical modulation of sulfolipid-1 biosynthesis in Mycobacterium tuberculosis
Journal of Biological Chemistry 287(11) (2012) 7990-8000
 

Mycobacterium tuberculosis possesses unique cell-surface lipids that have been implicated in virulence. One of the most abundant is sulfolipid-1 (SL-1), a tetraacyl-sulfotrehalose glycolipid. Although the early steps in SL-1 biosynthesis are known, the machinery underlying the final acylation reactions is not understood. We provide genetic and biochemical evidence for the activities of two proteins, Chp1 and Sap (corresponding to gene loci rv3822 and rv3821), that complete this pathway. The membrane-associated acyltransferase Chp1 accepts a synthetic diacyl sulfolipid and transfers an acyl group regioselectively from one donor substrate molecule to a second acceptor molecule in two successive reactions to yield a tetraacylated product. Chp1 is fully active in vitro, but in M. tuberculosis, its function is potentiated by the previously identified sulfolipid transporter MmpL8. We also show that the integral membrane protein Sap and MmpL8 are both essential for sulfolipid transport. Finally, the lipase inhibitor tetrahydrolipstatin disrupts Chp1 activity in M. tuberculosis, suggesting an avenue for perturbing SL-1 biosynthesis in vivo. These data complete the SL-1 biosynthetic pathway and corroborate a model in which lipid biosynthesis and transmembrane transport are coupled at the membrane-cytosol interface through the activity of multiple proteins, possibly as a macromolecular complex.

biosynthesis, Mycobacterium tuberculosis, sulfolipid, SL-1

The publication contains the following compound(s):
 

Expand this publication
3. (Article ID: 5340)
 
Shimamura M, Hidaka H
Therapeutic potential of cholesteryl O-acyl α-glucoside found in Helicobacter pylori
Current Medicinal Chemistry 19(28) (2012) 4869-4874
 

Steryl glycosides are derivatives of sterols where the 3β-hydroxy group is glycosylated. Some of them are further converted to steryl O-acyl glycosides. Steryl glycosides and their derivatives are widely distributed in plants, algae, and fungi, but are relatively rarely distributed in bacteria and animals. Accumulating evidence suggests that glycosylation of sterols not only modifies physicochemical properties of cell membranes but also alters immunogenicity of the cells. Helicobacter pylori, that colonizes the stomach and causes gastric diseases, is auxotrophic for cholesterol, so that it extracts this lipid from plasma membranes of epithelial cells of the host stomach. Since incorporation of cholesterol promotes immune responses of the host, Helicobacter pylori converts cholesterol to cholesteryl glucoside (ChG) and then to cholesteryl 6'-O-acyl glucoside (ChAcG) to evade the immune surveillance. We have found that ChAcG thus produced is specifically recognized by invariant Vα14-Jα18 TCR(+) (Vα14) NKT cells in a CD1-dependent manner. We have also found that activation of Vα14 NKT cells by administration of ChAcG retains homeostasis of immunity upon exposure to allergens and reduces the incidence of allergy. In this article, overview of immunological functions of steryl glycosides with an emphasis on the immunoregulatory functions of ChAcG, is demonstrated.

Helicobacter pylori, cytokine, Immunotherapy, allergy, immunomodulation, steryl glycoside, invariant NKT cell, IgE

The publication contains the following compound(s):
 

Expand this publication

Resort publications by:

New query Export IDs Home Help

Execution: 2 sec