Taxonomic group: protista / Euglenozoa
(Phylum: Euglenozoa)
NCBI PubMed ID: 32751743Publication DOI: 10.3390/nu12082293Journal NLM ID: 101521595Publisher: Basel, Switzerland: MDPI Publishing
Correspondence: nakashima

euglena.jp; tadachi.imm

mri.tmd.ac.jp
Institutions: euglena Co., Ltd., Tokyo 108-0014, Japan, Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
The intestinal tract contains over half of all immune cells and peripheral nerves and manages the beneficial interactions between food compounds and the host. Paramylon is a β-1,3-glucan storage polysaccharide from Euglena gracilis (Euglena) that exerts immunostimulatory activities by affecting cytokine production. This study investigated the signaling mechanisms that regulate the beneficial interactions between food compounds and the intestinal tract using cell type-specific calcium (Ca2+) imaging in vivo and in vitro. We successfully visualized Euglena- and paramylon-mediated Ca2+ signaling in vivo in intestinal epithelial cells from mice ubiquitously expressing the Yellow Cameleon 3.60 (YC3.60) Ca2+ biosensor. Moreover, in vivo Ca2+ imaging demonstrated that the intraperitoneal injection of both Euglena and paramylon stimulated dendritic cells (DCs) in Peyer's patches, indicating that paramylon is an active component of Euglena that affects the immune system. In addition, in vitro Ca2+ imaging in dorsal root ganglia indicated that Euglena, but not paramylon, triggers Ca2+ signaling in the sensory nervous system innervating the intestine. Thus, this study is the first to successfully visualize the direct effect of β-1,3-glucan on DCs in vivo and will help elucidate the mechanisms via which Euglena and paramylon exert various effects in the intestinal tract.
immune system, β-1, 3-glucan, Euglena gracilis, Ca2+ signaling, intestinal epithelial cell, intravital imaging, small intestine
Structure type: homopolymer
Location inside paper: abstract
Trivial name: glucan, β-1,3-glucan, curdlan, curdlan-type polysaccharide 13140, paramylon, curdlan, laminarin, β-glucan, curdlan, β-(1,3)-glucan, β-(1,3)-glucan, curdlan, curdlan, β-1,3-glucan, paramylon, reserve polysaccharide, b-glucan, β-1,3-D-glucan, laminaran, botryosphaeran, laminaran type β-D-glucan, latiglucan I, pachymaran, Curdlan, zymosan A, β-glucan, curdlan, laminarin, zymosan, zymosan, glucan particles, zymosan, β-(1-3)-glucan, β-(1,3)-glucan, β-(1,3)glucan, pachymaran, D-glucan (DPn)540, pachyman, laminaran, curdlan, zymosan, zymosan, β-(1,3)-glucan, zymosan A, zymosan, β-1,3-glucan, curdlan, β-1,3-glucan, curdlan, β-1,3-glucan, curdlan, pachyman, β-(1,3)-glucan, curdlan, callose, a water-insoluble β-(1→3)-glucan, fermentum β-polysaccharide, water-insoluble glucan, callose, laminarin, alkali-soluble β-glucan (PeA3), alkali-soluble polysaccharide (PCAP)
Compound class: EPS, O-polysaccharide, cell wall polysaccharide, lipophosphoglycan, glycoprotein, LPG, glucan, cell wall glucan, polysaccharide, glycoside, β-glucan, β-1, 3-glucan
Contained glycoepitopes: IEDB_1397514,IEDB_142488,IEDB_146664,IEDB_153543,IEDB_158555,IEDB_161166,IEDB_558869,IEDB_857743,IEDB_983931,SB_192
Methods: biological assays, statistical analysis, SDS, dendritic cells
NCBI Taxonomy refs (TaxIDs): 3039Reference(s) to other database(s): GTC:G51056AN, GlycomeDB:
157, CCSD:
50049, CBank-STR:4225, CA-RN: 51052-65-4, GenDB:FJ3380871.1
Show glycosyltransferases
There is only one chemically distinct structure: